

Operating condition and results

Tokyo Electric Power Company

• Restrikes after Shunt Reactor Openings

• Overvoltages due to Resonance

- To prevent CB from breaking down due to delayed current zeros
 - Switching procedure should be arranged so that current through CB can cross zero point
 - (1) As an example operation sequence,
 - 1. Cable is energized without shunt reactor
 - 2. Load at the remote end is fed through the cable
 - 3. Shunt reactor is switched on
 - (2) Sequential control of line-CB & shunt reactor-CB by line protection relay when a fault occurs (applied to 500kV cables in TEPCO)

• Restrikes after Shunt Reactor Openings

• Overvoltages due to Resonance

TEPCC

Restrikes after Shunt Reactor Openings

Countermeasures for the Restrikes

• Installation of Lightning Arresters

- Restrike overvoltage can be suppressed to an allowable level.
- Damage to CB contacts caused by arcing between contacts can not be avoided.
- Installation of Pole-Segregated CB Open Timing Controller
 - Restrike phenomena itself can be avoided; therefore, both overvoltage and damage to CB contacts are prevented.
 - ➢ Malfunction of controller can lead to ShR failure.

Restrikes after Shunt Reactor Openings

• Restrikes after Shunt Reactor Openings

• Overvoltages due to Resonance

TEPCC

Series Resonance

TEPCC

Countermeasure Taken for the Overvoltage

Voltage on the Secondary Side of the Transformer

(Switching Impulse Withstand Level : <u>750kV</u>)

